
Enterprise Architect 6.0
Model Driven Architecture

Implementing Model Driven
Architecture using
Enterprise Architect

Mapping MDA Concepts to EA Features

By Frank Truyen

frank.truyen@cephas.cc

for

Sparx Systems Pty Ltd

Version 1.1

Copyright Sparx Systems 2005 – All rights reserved. Page 1

mailto:frank.truyen@cephas.cc

Enterprise Architect 6.0
Model Driven Architecture

Table of Contents
... 1
Implementing Model Driven Architecture using.. 1
Mapping MDA Concepts to EA Features..1
By Frank Truyen.. 1
frank.truyen@cephas.cc... 1
for.. 1
Sparx Systems Pty Ltd.. 1
Version 1.1.. 1
Table of Contents..2
Model Driven Architecture and Enterprise Architect... 5
Abstract... 5
Abstract... 5
Model Driven Architecture...5
Model Driven Architecture...5

An Object Management Group (OMG) standard.. 5
A brief history.. 5
MDA in context.. 5
Major MDA concepts.. 6

System..6
Model... 6
Model driven..6
Architecture..7
Viewpoint...7

MDA viewpoints..7
Platform..7
Platform independence...7
Platform Model.. 8
Model Transformation... 8
Implementation.. 8

MDA models...8
Computation Independent Model (CIM)... 8
Platform Independent Model (PIM)...8
Platform Specific Model (PSM).. 8

A growing rate of adoption... 9
The promise of MDA... 9

Copyright Sparx Systems 2005 – All rights reserved. Page 2

Enterprise Architect 6.0
Model Driven Architecture

The MDA Process...10
The MDA Process...10

Transformation Mappings.. 10
Marking Models...11
Mapping Languages.. 11
Recording the transformations...11
Transformations illustrated.. 11
Generating code and other artifacts...12

MDA guidelines.. 13
MDA guidelines.. 13

Building computationally complete models...13
Applying MDA across viewpoints and tiers.. 15

Step 1 – Generating the first layer of abstraction.. 16
Step 2 – Generating the second layer of abstraction..16
Step 3 – Generating the implementation artifacts..17

Minimum tool requirements for MDA support... 18
Minimum tool requirements for MDA support... 18
The Enterprise Architect solution for applying MDA...20
The Enterprise Architect solution for applying MDA...20

Product history...20
Commitment to MDA and OMG standards in general..20
Testing our MDA compliance criteria... 20
Conclusion.. 21

References...23
References...23
About SPARX Systems... 24
About SPARX Systems... 24

Company Background ..24
Company Vision ..24
User Base...24
Contact Details... 24

About Cephas Consulting Corp... 25
About Cephas Consulting Corp... 25

Copyright Sparx Systems 2005 – All rights reserved. Page 3

Enterprise Architect 6.0
Model Driven Architecture

Company Background ..25
Company Focus ...25
Commitment to the OMG and MDA... 25
Contact Details... 25

Copyright Sparx Systems 2005 – All rights reserved. Page 4

Enterprise Architect 6.0
Model Driven Architecture

Model Driven Architecture and Enterprise Architect

Abstract
The goal of this document is to define Model Driven Architecture in terms of:

its major concepts,

the promises and goals which drive its adoption,

its abstract development process,

its concrete implementation.

Next under review are the minimal as well as optional requirements which a tool
should satisfy in order to qualify as being “MDA compliant”.

Enterprise Architect from Sparx Systems is then measured against this set of
requirements and its specific MDA implementation features are analyzed.

A separate paper (MDA in Practice) uses a running example to illustrate a set of
MDA transformations starting from a simple platform independent model.

Model Driven Architecture

An Object Management Group (OMG) standard
The Object Management Group (OMG) was formed as a standards organization to help
reduce complexity, lower costs, and hasten the introduction of new software applications.
One of the major initiatives through which the OMG is accomplishing this goal is by the
promotion of Model Driven Architecture® (MDA®) as an architectural framework for
software development. This framework is built around a number of detailed OMG
specifications which are widely used by the development community.

A brief history
In 2001 the OMG adopted the Model Driven Architecture as an approach for using
models in software development. Its three primary goals are portability, interoperability
and reusability through architectural separation of concerns.

MDA in context
One fundamental aspect of MDA is its ability to address the complete development
lifecycle, covering analysis and design, programming, testing, component assembly as
well as deployment and maintenance.

MDA itself is not a new OMG specification but rather an approach to software
development which is enabled by existing OMG specifications such as the Unified
Modeling Language (UML)®, the Meta Object Facility (MOF)™ and the Common
Warehouse Metamodel (CWM)™. Other adopted technologies which are of interest are
the UML Profile for Enterprise Distributed Object Computing (EDOC), including its
mapping to EJB, and the CORBA™ Component Model (CCM).

With new platforms and technologies constantly emerging, MDA enables the rapid
development of new specifications that leverage them, and streamlines the process of
their integration. In this way MDA provides a comprehensive, structured solution for
application interoperability and portability into the future. Precise modeling of the solution
domain in UML provides the added advantage of capturing its inherent intellectual
property in a technology neutral way.

Copyright Sparx Systems 2005 – All rights reserved. Page 5

file:///Y:/Reviews/Documentation and Guides/White Papers/MDA Whitepapers/25-01-2006/Features/EA4MDA_White_Paper_Practice.doc

Enterprise Architect 6.0
Model Driven Architecture

As illustrated in the following diagram, the OMG envisions MDA to encompass a full
range of "pervasive" services which are commonly found in modern distributed
applications.

Major MDA concepts

System
The context of MDA is the software system, either preexisting or under
construction.

Model
A model is a formal specification of the function, structure and/or behavior of a
system within a given context, and from a specific point of view (or reference
point). A model is often represented by a combination of drawings and text,
typically using a formal notation such as UML, augmented where appropriate
with natural language expressions.

A specification is said to be formal when it is based on a language that has a well
defined semantic meaning associated with each of its constructs, to distinguish it
from a simple diagram showing boxes and lines. It is this formalism which allows
the model to be expressed in a format such as XML, in accordance with a well
defined schema (XMI).

Model driven
Describes an approach to software development whereby models are used as
the primary source for documenting, analyzing, designing, constructing,
deploying and maintaining a system.

Copyright Sparx Systems 2005 – All rights reserved. Page 6

Enterprise Architect 6.0
Model Driven Architecture

Architecture
The architecture of a system is a specification of the parts and connectors of the
system and the rules for the interactions of the parts using the connectors1.

Within the context of MDA these parts, connectors and rules are expressed via a
set of interrelated models.

Viewpoint
A viewpoint is an abstraction technique for focusing on a particular set of
concerns within a system while suppressing all irrelevant detail. A viewpoint can
be represented via one or more models.

MDA viewpoints
MDA specifies three default viewpoints on a system: computation
independent, platform independent and a platform specific.

Computation independent
The computation independent viewpoint focuses on the context and
requirements of the system without consideration for its structure or
processing.

Platform independent
The platform independent viewpoint focuses on the operational
capabilities of a system outside the context of a specific platform (or set
of platforms) by showing only those parts of a complete specification
which can be abstracted out of that platform.

Platform specific
A platform specific viewpoint augments a platform independent viewpoint
with details relating to the use of a specific platform.

Platform
A platform is a set of subsystems and technologies which provide a coherent set
of functionality through interfaces and usage patterns. Clients of a platform make
use of it without concern for its implementation details. Examples of platforms
include operating systems, programming languages, databases, user interfaces,
middleware solutions etc.

Platform independence
Platform independence is a quality which a model may exhibit when it is
expressed independently of the features of another platform. Independence is a
relative indicator in terms of measuring the degree of abstraction which
separates one platform from another (i.e. where one platform is either more or
less abstract compared to the other).

1 Shaw and Garlan, Software Architecture, Prentice Hall

Copyright Sparx Systems 2005 – All rights reserved. Page 7

Enterprise Architect 6.0
Model Driven Architecture

Platform Model
A platform model describes a set of technical concepts representing its
constituent elements and the services it provides. It also specifies constraints on
the use of these elements and services by other parts of the system.

Model Transformation
Model transformation is the process of converting one model to another within
the same system. The transformation combines the platform independent model
with additional information to produce a platform specific model.

Implementation
An implementation is a specification which provides all the information required
to construct a system and to put it into operation. It must provide all of the
information needed to create an object, and to allow the object to participate in
providing an appropriate set of services as part of the system.

MDA models
MDA specifies three default models of a system corresponding to the three MDA
viewpoints defined above. These models can perhaps more accurately be described as
layers of abstraction, since within each of these three layers a set of models can be
constructed, each one corresponding to a more focused viewpoint of the system (user
interface, information, engineering, architecture, etc.).

Computation Independent Model (CIM)
A CIM is also often referred to as a business or domain model because it uses a
vocabulary that is familiar to the subject matter experts (SMEs). It presents
exactly what the system is expected to do, but hides all information technology
related specifications to remain independent of how that system will be (or
currently is) implemented.

The CIM plays an important role in bridging the gap which typically exists
between these domain experts and the information technologists responsible for
implementing the system.

In an MDA specification the CIM requirements should be traceable to the PIM
and PSM constructs that implement them (and vice-versa).

Platform Independent Model (PIM)
A PIM exhibits a sufficient degree of independence so as to enable its mapping
to one or more platforms. This is commonly achieved by defining a set of
services in a way which abstracts out technical details. Other models then
specify a realization of these services in a platform specific manner.

Platform Specific Model (PSM)
A PSM combines the specifications in the PIM with the details required to
stipulate how a system uses a particular type of platform. If the PSM does not
include all of the details necessary to produce an implementation of that platform
it is considered abstract (meaning that it relies on other explicit or implicit models
which do contain the necessary details).

Copyright Sparx Systems 2005 – All rights reserved. Page 8

Enterprise Architect 6.0
Model Driven Architecture

A growing rate of adoption.
MDA has been profitably implemented in many small and large organizations. While
some companies prefer to keep their success a secret to their competition, many have
agreed to publish their accomplishments, as can be seen on the OMG website2 as well
as in various magazine articles3.

The promise of MDA
The promise of Model Driven Architecture is to facilitate the creation of machine-readable
models with a goal of long-term flexibility in terms of:

• Technology obsolescence: new implementation infrastructure can be more easily
integrated and supported by existing designs.

• Portability: existing functionality can be more rapidly migrated into new
environments and platforms as dictated by the business needs.

• Productivity and time-to-market: by automating many tedious development tasks
architects and developers are freed up to focus their attention on the core logic of the
system.

• Quality: the formal separation of concerns implied by this approach plus the
consistency and reliability of the artifacts produced all contribute to the enhanced
quality of the overall system.

• Integration: the production of integration bridges with legacy and/or external systems
is greatly facilitated.

• Maintenance: the availability of the design in a machine-readable form gives
analysts, developers and testers direct access to the specification of the system,
simplifying their maintenance chores.

• Testing and simulation: models can be directly validated against requirements as
well as tested against various infrastructures. They can also be used to simulate the
behavior of the system under design.

• Return on investment: businesses are able to extract greater value out of their
investments in tools.

2 http://www.omg.org/mda/products_success.htm
3 For example at http://www.softwaremag.com/L.cfm?Doc=2005-07/2005-07mdauml

Copyright Sparx Systems 2005 – All rights reserved. Page 9

http://www.softwaremag.com/L.cfm?Doc=2005-07/2005-07mdauml
http://www.omg.org/mda/products_success.htm

Enterprise Architect 6.0
Model Driven Architecture

The MDA Process
Whatever the ultimate target platform may be, the first step when constructing an MDA-based
application is to create a platform-independent model expressed via UML. This general model
can then be transformed into one or more specific platforms such as CCM, EJB, .NET, SOAP,
etc.

A complex system may consist of many interrelated models organized along well defined layers
of abstraction, with mappings defined from one set of models into another. Within this global set
of models horizontal transformations may occur inside a single layer of abstraction, in addition to
the typical vertical transformations across layers.

Applying a consistent architectural style across viewpoints of the system is one illustration of such
a horizontal transformation. Other examples include:

• Within a CIM, create a target model containing all of the business rules defined in the
core business model.

• Within a PIM, create a target model containing only the data elements define in the
conceptual model.

• Within a PSM, create a target JUnit test model from a Java class model.

Note also that a PSM at one layer of abstraction may take on the role of a PIM with regards to a
further transformation down into another layer.

Beyond the perhaps simplistic notion of CIM/PIM/PSM, the two key concepts of MDA are models
and transformations.

The general pattern is:

This pattern can be repeatedly applied to successive models, each one playing the role of either
a PIM or a PSM.

Transformation Mappings
An MDA mapping provides specifications for how to transform a PIM into a particular
PSM. The target platform model determines the nature of the mapping. While part of the
transformation can result from a manual exercise, the intent is clearly to automate as
much of the process as allowed by the toolset in use.

Let’s take the example of a mapping which defines annotations (called marks in MDA
parlance) that are to be used for guiding the transformation of a UML PIM to an EJB
PSM: marking a UML class with the Stereotype "Session" would result in the creation of a
session bean - and other supporting classes - within the PSM.

Transformation rules between models can be expressed:

- At the type level, from types specified in the PIM language to types
expressed using the PSM language. In UML, examples of such types
referred to here include class, attribute and operation.

- In accordance to patterns of type usages in the PIM (e.g. a GOF strategy
pattern within a PIM can translate into an idiomatic equivalent in the PSM).

Copyright Sparx Systems 2005 – All rights reserved. Page 10

Source
Model

Transformation
Rules

Target
Model

Enterprise Architect 6.0
Model Driven Architecture

- At the metamodel (MOF) level, for transformations that need to bridge model
languages.

For the purpose of this white paper we will limit our scope of discussion to mappings from
one UML model to another UML model.

Marking Models
Type mappings are generally insufficient to specify a complete transformation: additional
rules are required to specify that certain types in the PIM must be annotated (marked) a
specific way in order to produce the desired output in the PSM. This extra information
cannot be determined from the PIM itself.

A mark represents a concept in the PSM which is applied to an element of the PIM in
order to indicate how that element is to be transformed.

Marks, being platform specific, are considered part of the PSM (in a multiple PSM
scenario each PSM would use different marks against the same PIM). A PIM plus all of
the platform marks constitutes the input to the transformation process resulting in a PSM.

Implicit or explicit transformation rules exist to indicate which model elements in the PIM
are suitable for certain marks in order to generate the desired element in the PSM.

The set of marks can be viewed as an overlay (or transparency) placed over the PIM for
the purpose of the transformation. This set can optionally be supplied as part of a UML
profile.

Another option is to associate a set of marks with a template containing the rules
according to which instances in a model are to be transformed. These rules can specify
which values in the source model can be used to fill the parameters of the template.

Mapping Languages
A model transformation mapping must be specified using some language, be it a natural
language, an action language, or a dedicated mapping language. The OMG is currently
in the process of adopting the MOF Query/View/Transformation (QVT) specification as a
portable mapping language.

Recording the transformations
A record of the transformation should include a chart indicating which PIM elements were
mapped to which PSM elements and include the mapping rule/s used for each part of the
transformation.

Transformations illustrated
The following diagram uses UML notation to present the various concepts involved in an
MDA transformation for a given platform (i.e. target model). It distinguishes between the
abstract view of the platform’s transformation directives, and a concrete implementation
in the context of a specific source model to be transformed into this platform.

Copyright Sparx Systems 2005 – All rights reserved. Page 11

Enterprise Architect 6.0
Model Driven Architecture

A further way to organize transformation mappings is via an inheritance hierarchy. For
example, a mapping to create an RDBMS information model could be specialized for
specific database vendors.

cd MDA Model

RDBMS Mapping

Oracle Mapping SQLServ er
Mapping

Generating code and other artifacts
The final step in a transformation process is to generate the implementation code as well
as perhaps other kinds of supporting artifacts such configuration files, component
descriptor files, deployment files, build scripts, etc. The more fully the application
semantics and run-time behavior can be included in the PSM, the more complete the
generated artifacts can be.

Depending on the maturity and quality of the MDA toolset, code generation will vary from
significant to substantial or, in some cases, even complete. Note that even minimal
automation simplifies the development work and represents a significant gain because of
the use of a consistent architecture for managing the platform-independent and platform-
specific aspects of applications.

Copyright Sparx Systems 2005 – All rights reserved. Page 12

Enterprise Architect 6.0
Model Driven Architecture

MDA guidelines

Building computationally complete models
How does one go about producing models which are semantically rich and precise
enough to drive model transformations, and ultimately complete implementation code
generation?

Declarative specifications, be it in the form of structural or behavioral UML models, are
typically insufficient to produce code which encompasses all of the logic and rules of the
system. For that purpose UML has defined an abstract Action Semantics Language
(ASL) through which behavior can be expressed generically, at a level of abstraction
beyond 3d GLs. However there is no adopted standard for a concrete syntax of this
language, nor are there currently standard mappings defined to common programming
languages such as Java or C#. In addition, tool vendors which do provide such a generic
language are typically not compliant with the specification, which means that any logic
expressed through it can not be exchanged with other UML tools.

Well defined declarative specifications can however be sufficient to drive the generation
of intermediate models, as well as much of the infrastructure artifacts which underlie
modern software systems, in the form of various descriptors, XML schemas, test cases,
database schemas, presentation tier components etc.

Here are some general guidelines for creating precise UML models which can be used as
input to MDA transformation and generation processes:

• Adopt the Design By Contract (DBC) techniques of specifying constraints (where
applicable) on :

o Operations, using pre- and post-conditions.

o On classes, attributes and other UML elements via invariants.

To be machine readable these constraints should be specified using the Object
Constraint Language (OCL), in addition to a textual version intended for the
casual reader. A model which does not express the constraints underlying its
behavior can not be considered semantically complete.

DBC constraints typically map to exceptions, however defined in a specific
programming language. They are also crucial for the manual or automated
development of test harnesses.

• Adorn UML State machines describing the internal behavior of an element, for
example a class, with constraints in the form of guard conditions.

• Attach constraints to Activity diagrams (which can be used at many levels of
abstraction) through various condition and guard expressions.

• Leverage the additions of UML 2.0 to the semantics of Interaction diagrams
which now permit the modeling of conditional execution, loops and time &
duration constraints, all of which contribute to greater precision.

• With regards to PIM class diagrams:

o Do not define accessor and mutator operations for attributes. Instead let
the transformation rules create the operations as appropriate for the
target platform.

o Consistently set the navigability of each association end. Transformers
and code generators rely on this to make appropriate mapping decisions.

Copyright Sparx Systems 2005 – All rights reserved. Page 13

Enterprise Architect 6.0
Model Driven Architecture

o Just like for attributes, do not define accessor and mutator operations for
navigable association ends.

o Properly mark class properties (attributes and association ends) with the
read-only constraint (UML property isReadOnly) to prevent the
generation of mutator operations.

o For multi-valued unbound properties (i.e. with a multiplicity > 1 and no
upper limit defined) state if the resulting collection is ordered or not (UML
property isOrdered) and whether duplicate items may exist or not (UML
property isUnique). Transformers make use of these constraints to select
different language constructs to implement the collection (e.g. Java List
versus Map).

o Define the multiplicity of both ends of an association, regardless of
whether an end is navigable.

o Define unique names for all attributes of a class, as well as unique role
names for all its navigable association ends.

o Optionally name the associations themselves (some MDA tools will
automatically generate internal association names for transformation
purposes).

o Draw UML dependency relationships between classes or components
where an implementation level dependency exists which is not otherwise
expressed in the model. Transformers can use this information, for
example to generate include statements in code.

o Modeling package and component dependencies can also be important
for generating correct build scripts.

o Use composition relationships when the intent is to tie the lifecycle of the
parts to the lifecycle of the whole. Appropriate destructor logic can be
generated from this notation.

o Mark classes that are not intended to be instantiated as abstract to avoid
the creation of unnecessary factory operations.

o Specify the data type of all attributes.

Copyright Sparx Systems 2005 – All rights reserved. Page 14

Enterprise Architect 6.0
Model Driven Architecture

Applying MDA across viewpoints and tiers
Which aspects of a typical business software system are the best candidates for applying
the MDA approach?

The following diagram illustrates the most common viewpoints and tiers:

At the core of the system reside a set of Platform Independent Models capturing:

• The business logic and rules.

• The Architectural Services that the application(s) will rely upon. The MDA
documentation refers to a set of pervasive services which typically support a
wide range business components and applications. Examples include an
Event Service, a Persistence Service, a Transaction Service, a Security
Service, a Notification Service and a Directory Service. These services are
an essential foundation for satisfying many non-functional requirements such
as security, performance and fault tolerance.

Copyright Sparx Systems 2005 – All rights reserved. Page 15

PSMPIM/PSMCore PIM Models
Business

Logic & Rules
Architecture

Services

U
se

r I
nt

er
fa

ce

M
od

el

Inform
ation

(data) M
odel

Integration (system-
to-system) Model

Computational Model

Application
code

EJB, .NET,
CORBA, JMS...

Data and rules XML Schema,
DTD, WSDL,…

Html,
JSP,
Struts
,
ASP…

Data
and
rules

DB
Schem
a,
Trigger
s,
Stored
Procs,

Data
and
rules

Enterprise Architect 6.0
Model Driven Architecture

Many organizations do not make the effort to abstract out such services from
the underlying platforms realizing them. Some feel that, for example, the use
of CORBA as a middleware platform provides sufficient protection from a
technology lock-in since many implementations of that standard are available
from a variety of vendors targeting different programming languages,
operating systems, network protocols, etc. For similar reasons J2EE can be
considered a relatively “independent” platform.

There is certainly a trade off involved between a greater degree of platform
independence on the one hand, and the cost of developing and maintaining a
platform independent architectural layer on the other. Note however that
MDA changes the terms of this discussion by providing the option of
automatically generating the platform specific models associated with these
services.

Note that the diagram does not include a representation of a Computation
Independent Model, not that such a model is not important but because the focus
of the diagram is on transformations that are closer to the final implementation
platforms.

Step 1 – Generating the first layer of abstraction
From the core a first level of transformations can occur targeting four key
viewpoints of the system: the User Interface model, the Information/Data model,
the Web Services model (system-to-system interfaces) and the Computational
model (holding the “middle-tier” business logic).

The key driver for mapping each of these platforms from the same core model is
to ensure that all of its rules and constraints are consistently applied across the
different target interfaces. If, for example, a business rule dictates that a certain
property must be a numeric value between 0 and 100, then this requirement
should be enforced regardless of whether it is updated via the User Interface, a
database transaction, or an XML file upload.

While the target models at this level of abstraction are still technology
independent they can be viewed as platform specific from the perspective of this
transformation.

Each of these target transformation models may contain a mix of both business
elements and architectural aspects relevant to that platform (user interface, data
structures, etc.). The distinction between the two facets may not be as clean cut
as implied by the diagram because architectural styles and patterns are often
embedded in the transformation rules and marks of a platform. Thus, for
example, a transformation based on a 3-tier architecture applied for the creation
of a user interface model will yield different results than a transformation defined
for a 4-tier architecture (one with an explicit workspace layer) applied against the
same core PIM model. The differences in the resulting models will find their
cause in the different mapping rules embedded in each transformation.

Step 2 – Generating the second layer of abstraction
Once the models created in step one are ready to be transformed into technology
specific platforms each one then takes on the role of a PIM. The transformation
process is now repeated with different rules and marks being applied to yield a
new set of target models, each of which is specific to a technology platform.

The same remark about the mix of business and architectural aspects applies
here as well.

Copyright Sparx Systems 2005 – All rights reserved. Page 16

Enterprise Architect 6.0
Model Driven Architecture

Step 3 – Generating the implementation artifacts
The final step, not expounded here, consists of generating the code and other
artifacts necessary to deploy and execute the various components of the
application(s) from the lowest levels of platform specific models.

Additional viewpoints not shown in the above diagram but which may be favorably
considered as targets for MDA transformations are:

• The Testing Model.

• The Deployment Model.

Copyright Sparx Systems 2005 – All rights reserved. Page 17

Enterprise Architect 6.0
Model Driven Architecture

Minimum tool requirements for MDA support
Keeping in mind the MDA features as exposed in the previous sections, what would constitute the
minimal set of requirements that a modeling tool needs to satisfy in order to qualify as being
“MDA compliant”?

The OMG is in the early process of defining a tool certification process, but no official document
exists on the topic at the time of this writing. Luckily Michael Guttman, director of the OMG’s MDA
FastStart4 program, has addressed this very question in a recent article5. The following
represents a summary of his criteria:

• The ability to exchange models with other tools, including from different vendors, using
one or more of the standardized MOF mappings: XML (XMI), Java (JMI) or CORBA.

• The use of MOF/XMI internally, within the different components of the tool (or tool suite).

• The ability to make the model-to-model transformations traceable, and thus by implication
the ability to repeatedly synchronize the source and target models.

• The commitment to support the forthcoming Query/View/Transformation (QVT) OMG
standard which intends to stipulate not only how all model transformations are specified,
but also how they can actually be modeled.

• Full support for all of the UML 2.0 features and OMG adopted UML Profiles.

To this essential list one may add the following features:

• Forward and reverse engineering of code in at least one programming language. Similar
forward and reverse engineering capabilities in these additional areas is also a great
plus:

o Database schemas.

o XML schemas.

o WSDL declarations.

o Common user interface implementation modules such as Java Server Pages
(JSP) and Active Server Pages (ASP).

• Support for OCL with at a minimum syntax validation. But ideally with:

o Validation against the model (i.e. validating that the semantics of the OCL
expressions are accurately stated in terms of the model elements being
referenced).

o Automated generation of constraint-checking code from the OCL, to be included
in the test and/or live version of the implementation. This can cut down
significantly the manual coding effort needed.

• The ability to create and persist a custom MOF-based metamodel. Additionally:

o The ability to create an instance model of the custom metamodel (i.e. a model
which is fully compliant with all the constraints specified by that metamodel).

• The ability to “attach” and “detach” marks from a PIM (marks typically appear in the form
of stereotypes, tagged values and constraints). Since marks clearly belong to the target
PSM domain, this capability allows the PIM to remain truly platform neutral, and supports
the option of applying multiple PSM marks against the same PIM.

4 http://www.omg.org/faststart/index.htm
5 http://www.softwaremag.com/L.cfm?Doc=2005-04/2005-04mdatools

Copyright Sparx Systems 2005 – All rights reserved. Page 18

http://www.softwaremag.com/L.cfm?Doc=2005-04/2005-04mdatools
http://www.omg.org/faststart/index.htm

Enterprise Architect 6.0
Model Driven Architecture

• Comprehensive model validation so that the tool can ensure that all of the guidelines set
forth for building computationally complete models are followed.

• Support for a concrete implementation of the abstract Action Semantics defined in UML.
A welcome extension would be:

o the mapping of this concrete syntax to at least one common programming
language (e.g. Java or C#).

• The ability to identify and create UML patterns and to apply these patterns against model
elements.

Copyright Sparx Systems 2005 – All rights reserved. Page 19

Enterprise Architect 6.0
Model Driven Architecture

The Enterprise Architect solution for applying MDA
After gaining an understanding of what it means for a tool to support MDA, we can now take a
look at the hottest UML modeling product currently on the market : Enterprise Architect (EA) from
Sparx Systems6. For a complete list of all of the product’s features please visit the Sparx website.
Here the focus is primarily on those capabilities which are relevant to the support of MDA.

Product history
Enterprise Architect is a mature UML 2.0 based modeling tool for the Windows platform
(with a version for Linux running under Cross-Over Office) which has been improved over
the course of seven years, with a five year commercial history and record of fast
evolution and impressive innovation.

Commitment to MDA and OMG standards in general
Sparx Systems has at numerous times stated their strong commitment to MDA and its
underlying OMG standards such as UML, MOF and XMI. Its mission statement is quoted
here:

To provide an affordable, high-quality, team based modeling environment
founded on the UML 2.0 specification, with comprehensive support for model to
model transformations as well as model driven generation of common
development artifacts such as documentation, source code, test scripts,
deployment descriptors, XML schemas, database schemas, etc.

Out of the box, Enterprise Architect 6.0 offers a number of features targeted at MDA
driven development, including a model-to-model transformation engine, allowing
modelers to target multiple platform specific models from a single PIM – and to
synchronize PIM changes into each PSM on demand. The built-in transformation
templates include mappings to C#, DDL, EJB, Java, JUnit, NUnit, WSDL and XSD (XML
Schema).

Testing our MDA compliance criteria
The set of criteria for MDA compliance defined earlier can now be used to determine how
well Enterprise Architect measures up. This comparison is based on the feature set of EA
version 6.0.

MDA Feature √ Comments

MOF-XML mapping (XMI) √

MOF-Java mapping (JMI) -

MOF-CORBA mapping -

Internal use of MOF/XMI √ Entire models, package hierarchies
and individual packages can be saved
as XMI files for import/export as well as
for configuration management
purposes.

Traceability and synchronization of
model-to-model transformations

√ Changes to a PIM can be synchronized
into one ore more PSMs as needed,
maintaining a tight coupling between

6 http://www.sparxsystems.com/

Copyright Sparx Systems 2005 – All rights reserved. Page 20

http://www.sparxsystems.com/

Enterprise Architect 6.0
Model Driven Architecture

the two.

Commitment to implement QVT √ Waiting for the final release of QVT as
an approved OMG standard.

Complete UML 2.0 support √

Support for UML Profiles √ Allows the user to import predefined
(standard) profiles and to create her/his
own.

Forward and reverse engineering of:

Programming languages √ Supports Java, C++, C#, VB, & others.

Code generation templates can be
customized by the user.

Database schemas √ SQL Server, Oracle, My SQL,…

XML Schema √

WSDL √

JSP, ASP, others - No standard currently defined. Too
many technologies in use.

Support for OCL:

Syntax checking √

Model validation √ Partial as of this release

Automated generation of code - Planned for a future release

Support for MOF:

Create & persist MOF models √

Create MOF model instances -

Attach & detach marks from a PIM -

User extensible model validation √

Support for Action Semantics:

Mapped to a concrete syntax -

Mapped to a 4GL -

Create and apply UML patterns √

Ratio of implemented features 15/23

Conclusion
The conclusion is obvious : Enterprise Architect satisfies all of the core requirements for
being considered MDA compliant, as well as many of the additional features that have
been identified in this document.

As a roadmap for an even more extensive compliance in a future release, the three most
important capabilities that are missing at this time can be identified as:

1. Full validation of OCL statements against model elements.

Copyright Sparx Systems 2005 – All rights reserved. Page 21

Enterprise Architect 6.0
Model Driven Architecture

2. Automated generation of code from OCL constraints.

3. Support for a concrete implementation of the Action Semantics Language. In the
interim, support for specifying business logic in the two most commonly used
programming languages: Java and C#.

Version 6.0 of Enterprise Architect offers a sufficient range of tools for the successful
implementation of an MDA based development approach.

The model-to-model transformation engine augmented with customizable code
generation templates, the ability to leverage UML profiles and patterns, as well as the
integrated API for scripting and extending the tool itself all make Enterprise Architect a
compelling MDA solution.

Copyright Sparx Systems 2005 – All rights reserved. Page 22

Enterprise Architect 6.0
Model Driven Architecture

References
ftp://ftp.omg.org/pub/docs/ab/01-02-04.pdf MDA – A Technical Perspective by the

OMG Architecture Board

http://www.omg.org/docs/omg/00-11-05.pdf MDA White Paper by Richard Soley and
the OMG Staff Strategy Group

http://www.omg.org/docs/ormsc/05-04-01.pdf A Proposal for an MDA Foundation
Model (An ORMSC White Paper)

http://www.omg.org/docs/omg/03-06-01.pdf MDA Guide Version 1.0.1

MDA Explained – The Model Driven
Architecture: Practice and Promise

Anneke Kleppe, Jos Warmer and Wim
Bast – Addison-Wesley

Model Driven Architecture – Applying MDA
to Enterprise Computing

David S. Frankel – OMG Press

The Object Constraint Language – Getting
Your Models Ready for MDA

Jos Warmer & Anneke Kleppe –
Addison-Wesley

Model Driven Architecture with Executable
UML

Chris Raistrick, Paul Francis, John
Wright, Colin Carter, Ian Wilkie

Business Component Factory Peter Herzum and Oliver Sims – OMG
Press

Executable UML ; A Foundation for Model
Driven Architecture

Marc J. Balcer & Stephen J. Mellor –
Addison-Wesley

For a summary of MDA resources and MDA style transformations in EA see:

http://sparxsystems.com.au/resources/mda/index.html

For an overview of writing transformations see:

http://sparxsystems.com.au/resources/mda/writing_transformations.html

Copyright Sparx Systems 2005 – All rights reserved. Page 23

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/ormsc/05-04-01.pdf
http://www.omg.org/docs/omg/00-11-05.pdf
ftp://ftp.omg.org/pub/docs/ab/01-02-04.pdf

Enterprise Architect 6.0
Model Driven Architecture

About SPARX Systems

Company Background
Established in 1996 by Geoffrey Sparks, Sparx Systems is an Australian company based
at Creswick, near Ballarat, Victoria. With over seven years' investment in the
development of Enterprise Architect, the company's motivated team of employees are
dedicated to the ongoing development and support of software tools, object-oriented
methodologies and CASE tools.

Company Vision
Sparx Systems aims to satisfy the growing needs of the software and business
development industry by providing immediate delivery and ongoing support of affordable,
productive and user-friendly business/system design software.

Sparx Systems believes that a complete modeling and design tool should be used
throughout the full process/software lifecycle. Our subscription plan reflects this, and our
belief that "life-cycle" software should be as dynamic and modern as the systems you
design and maintain.

Sparx software is intended for use by analysts, designers, architects, developers, testers,
project managers and maintenance staff - almost everyone involved in a software
development project and in business analysis. It is Sparx Systems' belief that highly
priced CASE tools severely limit their usefulness in a team, and ultimately to an
organization, by narrowing the effective user base and restricting easy access to the
model and the development tool. To this end, Sparx Systems are committed to both
maintaining an accessible pricing model and to distributing a 'Read Only' (EA Lite)
version of EA for use by those who only need to view modeling information.

User Base
Sparx software is utilized by a wide variety of companies ranging from large, well-known,
multinational organizations to many smaller independent companies and consultants.
The Sparx discussion forum confirms a solid and active user base.

Sparx software is used for the development of various kinds of software systems for a
wide range of industries, including: aerospace, banking, web development, engineering,
finance, medicine, military, research, academia, transport, retail, utilities (gas, electricity
etc.), electrical engineering and many more. It is also used effectively for UML and
business architecture training purposes in many prominent colleges, education facilities
and universities around the world.

Contact Details
Website : http://www.sparxsystems.com

Sparx Systems can be contacted at the following email addresses:

General Enquiries: sparks@sparxsystems.com.au

Support Enquiries: support@sparxsystems.com.au

Sales and Purchase Enquiries: sales@sparxsystems.com.au

Copyright Sparx Systems 2005 – All rights reserved. Page 24

mailto:sales@sparxsystems.com.au
http://www.sparxsystems.com/

Enterprise Architect 6.0
Model Driven Architecture

About Cephas Consulting Corp.

Company Background
Since 2001, Cephas Consulting Corp. has been active helping its corporate clients
introduce state of the art information technologies. We offer expertise in the areas of:

• Modeling business applications using object oriented techniques.

• Building distributed component infrastructures.

• Introducing formal software development processes.

• Migrating development organizations into Model Driven Architecture (MDA).

• Providing advanced UML/MDA training and mentoring.

Company Focus
Cephas specializes in introducing UML™ modeling into organizations via training and
mentoring techniques, using Enterprise Architect as the primary tool for capturing both
business and system domain information.

The team of software engineers and architects at Cephas combines many years of
experience, allowing it to offer a one-stop solution addressing all aspects of managing the
enterprise meta-data using Enterprise Architect:

• Training & mentoring from beginner to expert level.

• Migrating meta-data out of legacy tools.

• Establishing onsite guardianship of the tool, including configuration and
replication management.

• Customizing the tool in order to respond to unique client requirements.

• Providing expert level support and maintenance.

Commitment to the OMG and MDA
Cephas Consulting has the required expertise to lead organizations into the use of Model
Driven Architecture. As early adopters we have successfully implemented MDA and are
pleased to be among the first participants to the MDA FastStart program put in place by
the OMG. We are also thrilled to work as OMG members on expanding the mind share of
MDA in the marketplace, because we believe it is ideally suited to deal with the
challenges of managing complex software development in times of rapid technology
obsolescence.

Our highest commitment is in achieving success through quality, and we take pride in the
accomplishments of our clients.

Contact Details
Website : http://www.cephas.cc

Cephas Consulting can be contacted at the following email addresses:

General enquiries: cephas.contact@cephas.cc

Author enquiries: frank.truyen@cephas.cc

Copyright Sparx Systems 2005 – All rights reserved. Page 25

mailto:frank.truyen@cephas.cc
mailto:cephas.contact@cephas.cc
http://www.cephas.cc/

