
OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 69
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite
Model Editing and SSP
Ochel, Lennart and Braun, Robert and Thiele, Bernhard and Asghar, Adeel and Buffoni, Lena and Eek,
Magnus and Fritzson, Peter and Fritzson, Dag and Horkeby, Sune and Hällquist, Robert and Kinnander, Åke
and Palanisamy, Arunkumar and Pop, Adrian and Sjölund, Martin

69

OMSimulator – Integrated FMI and TLM-based Co-simulation
with Composite Model Editing and SSP

Lennart Ochel1 Robert Braun1 Bernhard Thiele2 Adeel Asghar1 Lena Buffoni1 Magnus Eek3

Peter Fritzson1 Dag Fritzson4 Sune Horkeby5 Robert Hällquist3 Åke Kinnander5 Arunkumar
Palanisamy1 Adrian Pop1 Martin Sjölund1

1PELAB – Programming Environment Lab, Dept. of Computer and Information Science, Linköping University,
SE-581 83 Linköping, Sweden, {lennart.ochel, robert.braun}@liu.se

2Institute of System Dynamics and Control, German Aerospace Center (DLR), 82234 Weßling, Germany,
bernhard.thiele@dlr.de

3Saab AB, Bröderna Ugglas gata, SE-582 54 Linköping, Sweden
4SKF AB, SE-415 50 Göteborg, Sweden

5Siemens Turbomachinery AB, Slottsvägen, SE-612 31 Finspång, Sweden

Abstract
OMSimulator is an FMI-based co-simulation tool and re-
cent addition to the OpenModelica tool suite. It sup-
ports large-scale simulation and virtual prototyping us-
ing models from multiple sources utilizing the FMI stan-
dard. It is integrated into OpenModelica but also avail-
able stand-alone, i.e., without dependencies to Modelica-
specific models or technology. OMSimulator provides
an industrial-strength open-source FMI-based modelling
and simulation tool. Input/output ports of FMUs can be
connected, ports can be grouped to buses, FMUs can be
parameterized and composed, and composite models can
be exported according to the (preliminary) SSP (System
Structure and Parameterization) standard. Efficient FMI-
based simulation is provided for both model-exchange and
co-simulation. TLM-based tool connection is provided
for a range of applications, e.g., Adams, Simulink, Beast,
Dymola, and OpenModelica. Moreover, optional TLM
(Transmission Line Modelling) domain-specific connec-
tors are also supported, providing additional numerical
stability to co-simulation. An external API is available
for use from other tools and scripting languages such as
Python and Lua. The paper gives an overview of the tool
functionality, compares with related work, and presents
experience from industrial usage.
Keywords: FMI, FMU, SSP, modelling, simulation, co-
simulation, composite

1 Introduction
The use of virtual prototyping methods in product de-
velopment has become an indispensable tool to manage
the complexity of competitive modern products and in-
dustrial processes. Modelling the dynamic behaviour of
such products and processes often requires considering
systems that are composed of physical subsystems (usu-
ally from different physical domains) together with com-
puting and networking. The Modelica language, which al-

lows integrating discrete-time dynamics (e.g., control soft-
ware) and continuous-time dynamics (process behaviour),
is well suited for this task.

However, a frequent problem in larger industrial
projects is that although component-level models are
available, it is a big hurdle to integrate them into larger
system simulations. This is because different develop-
ment groups and disciplines, e.g., electrical, mechanical,
hydraulic, and software, often use their own approaches
and special purpose tools for modelling and simulation.

To improve the interoperability of behavioural mod-
els, the MODELISAR project (MODELISAR Consor-
tium, 2011), developed the Functional Mock-up Interface
(FMI) as a standardized exchange format for behavioural
models. Figure 1 illustrates the basic concept: Model
components are exported as Functional Mock-up Units
(FMUs) from their respective discipline specific tool, an-
other simulator tool can import the FMUs and integrate
them into a Functional Mock-up using a suitable master
algorithm for coupling the individual units. In October
2014, the improved version FMI 2.0 was released to the
public (FMI development group, 2014).

Figure 1. Model integration using FMI (source:
https://www.fmi-standard.org/).

The motivation behind FMI is easily understood, how-
ever, coupling different simulator codes is a major chal-
lenge and an active research area. Modular simulation

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

70 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

of a global system by coupling different simulator codes
may easily result in an unstable integration or may require
proceeding in prohibitively small time steps (Schierz and
Arnold, 2012). Successful co-simulation needs:

• A suitable module interface (this is what FMI stan-
dardizes) and

• A suitable master algorithm for coupling the modules
(not standardized in FMI).

In previous work, Transmission Line Modelling (TLM)
was integrated as one possible approach to co-simulation
in OpenModelica (Siemers et al., 2006), also considered
as one approach to gain speed-up by simulation paral-
lelization during the RTSIM project (Sjölund et al., 2010;
Sjölund, 2015), however, this was not based on FMI.
Additional difficulties arise if discrete-time models (e.g.,
control software) are included within a co-simulation
setup (hybrid co-simulation). With regards to hybrid co-
simulation, the latest FMI 2.0 standard was shown to have
deficiencies and different proposals to amend these defi-
ciencies were discussed, e.g., (Broman et al., 2013; Cre-
mona et al., 2016; Tavella et al., 2016; Cremona et al.,
2017).

This paper describes an industrial-strength co-
simulation approach. First, it discusses FMI for
co-simulation in general and then it introduces the
OMSimulator tool framework in Section 3. Based on that,
the graphical user interface is outlined in Section 4 and
some industrial applications are discussed in Section 5.

2 FMI for Co-Simulation
The FMI 2.0 standard defines two interfaces (FMI devel-
opment group, 2014, p. 4):

• FMI for Model Exchange (FMI-ME): The intention
is that a modelling environment can generate C code
of a dynamic system model that can be utilized by
other modelling and simulation environments.

• FMI for Co-Simulation (FMI-CS): The intention is to
provide an interface standard for coupling simulation
tools in a co-simulation environment.

The two interfaces share common parts and concepts,
in particular:

• FMI C-application programming interface (API): All
computations are evaluated by calling standardized
C-functions.

• FMI Extensible Markup Language (XML) descrip-
tion schema: The schema describes the structure
and content of an XML file (named modelDescrip-
tion.xml) generated by the modelling environment
which exports an FMU. This modelDescription.xml
file contains the definition of all variables and other
structural information of an FMU in a standardized
form.

• An FMU is delivered as a zip file which contains
the XML description file, the code that provides the
C-API either in binary form as shared library or as
source code, as well as potential additional resources,
e.g., tables, model icon, and documentation.

Basically, FMI-ME differs from FMI-CS in that it re-
quires the importing tool to provide a numerical solver
for simulating the FMU. Such solvers require vectors for
states, derivatives and zero-crossing functions which are
exposed by the FMI-ME API. By contrast, FMI-CS does
not require the importing tool to provide a numerical
solver. Instead, all required solvers are embedded within
the FMI-CS and the related information is not exposed by
the FMI-CS API.

2.1 FMI-based Co-Simulation
An FMI-based composite model for co-simulation can be
constructed with both co-simulation and model-exchange
FMUs. The building blocks determine certain constraints
of the composite model structure. A straightforward de-
rived structure from the FMI specification is given in Ta-
ble 1.

Table 1. Overview of co-simulation building blocks.

solver components
master algorithm co-simulation units

• CS-FMU
• integrator + set of ME-FMUs

integration method set of ME-FMUs

The master algorithm forces the so-called global time
steps, which are used to exchange information between
co-simulation units. Each co-simulation unit takes its own
local time steps to reach the next forced global time step.

A co-simulation unit can be composed of a set of ME-
FMUs. In this case, these ME-FMUs can communicate
with a higher exchange rate than the global time step, ba-
sically at each local time step.

2.1.1 Initialization

Initialization must be performed within a dedicated initial-
ization mode. A consistent initial state is computed based
on the dependency information provided by the FMUs
(optional FMI feature) and the actual connections between
the FMUs. First, all parameters will be set to either pre-
defined values or explicitly overwritten by the user’s in-
put. The same applies to start values, which might be cru-
cial for internal nonlinear systems and external algebraic
loops. After that, all the information is propagated based
on the dependency information.

2.1.2 Simulation

The continuous simulation is performed by a master-
algorithm which synchronises all co-simulation units and
exchanges information between them based on internal

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 71
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

output-input dependencies and external input-output de-
pendencies. The continuous simulation gets interrupted if
an event is detected or the final simulation time is reached.

2.1.3 Event handling

The discrete event simulation takes place if discrete
changes are detected. Co-simulation FMUs cannot expose
internal events, which means that only discrete changes in
output variables at communication time points can be de-
tected. In that case, the changes are propagated and a new
consistent model state is computed. This might be an iter-
ative process in case of algebraic loops.

The situation for model-exchange FMUs is a bit differ-
ent. A set of connected exchange-FMUs are simulated us-
ing a shared solver and events can be processed and com-
municated within this set of FMUs directly when they oc-
cur.

2.2 Numerically Stable Co-Simulation
Co-simulation requires different parts of the complete
model to be solved separately by isolated solvers. This
will inevitably delay the interchanged variables to the next
communication step. Such delays may affect numerical
stability and simulation accuracy.

In many cases, a master algorithm with fixed commu-
nication step size is used and the step size is reduced until
the results appear to be stable for the given problem. This
is performance consuming and can only ensure stability
in the observed working points. More sophisticated solu-
tions include adaptive communication step-size (Schierz
et al., 2012) or relaxation techniques (Schweizer et al.,
2016). Such methods typically rely on rollback mecha-
nisms, which are often not available (state serialization in
FMUs is optional).

One technique that addresses this issue is TLM (Krus,
2011). Every physical element has a finite information
propagation speed. By mapping the physically motivated
delays to the communication points in the model, artifi-
cial time delays can be avoided. As a result, the stability
properties of the simulation model will reflect the stability
properties of the physical system it represents. In other
words, the separation into different solvers will not af-
fect the numerical stability of the complete model. The
TLM implementation in OMSimulator is based on previ-
ous work by SKF (Siemers et al., 2009; Fritzson et al.,
2018). The boundary equations for a TLM connection are
shown in Equation 1 and 2:

e1(t) = e2(t −∆t)+Zc [f1(t)+ f2(t −∆t)] (1)
e2(t) = e1(t −∆t)+Zc [f2(t)+ f1(t −∆t)] (2)

e1, e2: effort variables
f1, f2: flow variables

Zc: characteristic impedance
∆t: time delay

It can be noted that the effort variable on one side of
the connection is always independent of variables on the
other side within a (usually small) time frame of ∆t, during
which solvers on both sides can work independently.

With FMI for co-simulation, sub-models can only ex-
change variables at communication time points. This in-
duces sampling errors, which greatly reduces the benefits
of TLM. OMSimulator addresses this by supporting in-
terpolation, either by sending derivatives of the input sig-
nals or by providing the sub-models with interpolation
tables (Braun et al., 2017b). Based on the assumption
that sampling errors arise from aliasing, a related solu-
tion could be to use anti-aliasing filters (Benedikt et al.,
2013; Drenth, 2017). Another solution based on increas-
ing communication step size using context-based extrapo-
lation was proposed by (Khaled et al., 2014). Both inter-
polation and anti-aliasing features would greatly benefit
from callback functions for writing intermediate outputs
and requesting intermediate inputs. This improvement has
been suggested to the FMI design group.

3 OMSimulator Tool Framework
OMSimulator is a unified co-simulation tool that supports
FMI 2.0 for model exchange and co-simulation. One of its
unique features is the support of TLM for numerically sta-
ble co-simulation. Simulations can be performed as soft
real-time or offline simulations.

3.1 Main Framework Aspects
OMSimulator is developed as a standalone open-source
simulation library with a rich C-API. The integration into
the OpenModelica graphical editor OMEdit demonstrates
how the C-API can be utilized for providing an intuitive
(graphical) user experience. Additionally, OMSimulator
provides a command-line interface (CLI) and scripting in-
terfaces for Python and Lua. These different interfaces can
be used to integrate OMSimulator into third-party tools
and specialized applications, e.g. flight simulators and op-
timization applications.

The open-source implementation enables research on
various co-simulation questions, e.g. dependency-graph-
based master algorithms for parallel and multi-rate execu-
tion of FMI components.

3.2 Simulation Architecture
Composite models are constructed as a tree of certain
building blocks. The root node is either a TLM system,
weakly-coupled system (WC system), or strongly-coupled
system (SC system). The systems differ in the way con-
nections are handled:

• TLM systems contain TLM connections, which can
basically be considered as physical-motivated de-
layed connections.

• Weakly-coupled systems are used for actual co-
simulation. All simulation units run independently

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

72 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Figure 2. PI controller model created from 9 FMUs and connected to 2 lookup tables for the boundary conditions.

and are synchronized by a master algorithm at cer-
tain communication time points.

• Strongly-coupled systems are used to wrap-up
model exchange FMUs into a co-simulation unit.
They share a common solver and use a continuous
communication schema.

A system can contain other systems, components (i.e.
FMUs or lookup tables), connectors, and buses.

4 Graphical User Interface with Com-
posite Model Editor

A graphical user interface has been developed as an ex-
tension to the existing OpenModelica Connection Editor
(OMEdit) (Asghar and Tariq, 2010) and the composite
model editor presented in (Mengist et al., 2015). OMEdit
communicates with OMSimulator through the C-API for
visual composite modelling.

4.1 Visual Modelling
The graphical user interface allows the user to create com-
posite models and add systems, components (FMUs, ta-
bles and external models), connectors, buses and connec-
tions to the model. Each composite model is displayed in
the form of a hierarchical tree as shown in the left column
of Figure 2.

Each element in the hierarchical tree consists of an icon,
diagram and text view except for the top-level model, con-
nectors and buses. The model element does not have an

icon view and the connectors and buses are non-editable
shapes.

A user can create a connection between two connectors
or between two buses. A bus or a TLM bus consists of a
list of connectors. When a connection between two buses
is made, a bus connection dialog is shown (see Figure 3).
The dialog maps the inputs and outputs of the buses auto-
matically. This allows making connections for large sys-
tems trivial.

4.2 Simulation and Post Processing
The model needs to be in the instantiated state before per-
forming the simulation. Once the model enters into the in-
stantiation phase the user can set the FMU parameters and
start the simulation. The user interface shows the sim-
ulation status and progress using the callback functions
from the C-API. The simulation results are visualized in
the plotting perspective of OMEdit as shown in Figure 4.

5 Industrial Applications and Bench-
marks

In this section, several industrial applications are pre-
sented.

5.1 Saab Use Case
Analysing and designing sub-systems separately is not
enough in modern aircraft development. A competitive
product needs to be developed considering the joint be-
haviour of tightly coupled sub-systems in order to avoid

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 73
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

Figure 3. Bus connection.

sub-optimization as well as to achieve the desired high
level of aircraft integration. Engineers and researchers,
therefore, need to have the means of detailed analysis us-
ing coupled simulation models, developed in a wide va-
riety of different domain-specific tools, available on their
desktop computers. Scalable, numerically stable, and dis-
tributed simulations need to be achieved while preventing
tool vendor lock-in effects as well as minimizing licensing
costs (Hällqvist et al., 2018).

A detailed aircraft vehicle systems simulator is devel-
oped throughout the OpenCPS project. The simulator
aims to serve as an industrially relevant platform for test-
ing standardized methods for connecting and simulating
models from different tools in the OMSimulator as well
as other integrating simulation tools. The aircraft systems
simulator is developed in parallel to the OMSimulator,
continuously exposing industrial needs and requirements
that were not captured during the master simulation engine
specification phase (OpenCPS project partners, 2016). An
early prototype of the aircraft vehicle systems simulator
was presented in (Hällqvist et al., 2017). The simula-
tor was further developed and expanded to enable stud-
ies of pilot thermal comfort connected to Environmen-
tal Control System (ECS) performance (Hällqvist et al.,
2018; Schminder et al., 2018). The latter combines the
domains of hardware, software, and human factors mod-
elling. Two different composite models of the same sys-
tem were created: one using only traditional connections
between FMUs, referred to as an FMI composite model,
and one with only TLM type connections, referred to as a
TLM composite model.

A schematic description of the different included sub-

Figure 4. Simulation result.

systems is presented in Figure 5. The simulator includes
an engine model designed to provide the included ECS
with air at high temperature and pressure depending on
the aircraft boundary conditions. The boundary condi-
tions are expressed by the aircraft operational point along
with outputs from the included atmosphere model. In
turn, the ECS provides its consumers with conditioned
air at the correct mass flow, temperature, and pressure.
The specified mass flows, temperatures, and pressures are
achieved via a total of five modelled motorized valves
controlled by a modelled software, denoted ECS Con-
trol in the figure. The included consumers are a ther-
moregulatory cockpit model, described in detail by Sch-
minder et al. in (Schminder et al., 2016), along with
two simple place-holder consumers representing subsys-
tems requiring air cooling and/or pressurization. The
cockpit model provides necessary inputs to the included
pilot comfort model which incorporates numerous well-
established comfort measures into the simulation, such as
the Fighter Index of Thermal Stress (Nunneley and Stib-
ley, 1979). The Engine, ECS, and ECS Control mod-
els are expressed using the Modelica language whereas
the atmosphere, cockpit, and pilot comfort models are
developed in Matlab/Simulink (MathWorks). All mod-
els are exported as FMUs for co-simulation, the Model-
ica models using Dymola (Dassault Systemes AB), and
the Matlab/Simulink models using the Dassault developed
toolbox FMI Kit for Simulink. The Modelica models
are all exported with the variable order and variable step
solver CVODE (Lawrence Livermore National Labora-
tory) whereas the Matlab/Simulink models are exported
with fixed step solvers.

In (Braun et al., 2017b), different approaches to estab-
lishing interoperability between FMI for Co-Simulation
and TLM were developed and evaluated. The most suited
approach of using callback functions for FMUs to request
inputs at the times they are needed is not possible with
FMI 2.0. One feasible workaround is to use fine-grained

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

74 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Figure 5. Schematic overview of an aircraft systems simulator comprising detailed sub-system simulation models.

interpolation inside FMUs, see Section 2.2. The mission
simulation presented here serves as an industry grade ver-
ification test-case for the method of using fine-grained in-
terpolation, in the OMSimulator, to ensure numerical sta-
bility during transient conditions.

A subset of the mission boundary conditions are pre-
sented in Figure 6, the altitude corresponds to the left-
hand side y-axis and the Mach number to the right-hand
side y-axis. The ECS consumer supply pressure is plotted
for simulations using only TLM connections (Red) and
using only traditional native FMI connections (Black) in
Figure 7. The results are similar and the discrepancies are
likely a result of aliasing effects resulting from a slightly
too long communication interval in the native FMI simu-
lation. The main difference between the presented simu-
lations is that all included FMUs are executed in parallel,
using physically motivated delays, for the TLM compos-
ite model. In contrast to the native FMI zero-order-hold
sampling resulting in constant input to FMUs during each
master step, the TLM solution guarantees the availability
of interpolated input data at the discretion of each FMU’s
internal solver. For this particular composite model ex-
ample, the TLM parallelization does not decrease the sim-
ulation execution time compared to the native FMI sim-
ulation. The main reason for this is that the composite
model is not well structured from a parallelization per-
spective, and thus the FMU representing the ECS physical
system clearly dominates the computational effort. In ad-
dition, the native FMI simulation is tuned to use the largest
communication interval possible challenging the numeri-
cal stability of the master simulation, whereas the com-
munication interval in the TLM simulation is based on the
real physics and does not compromise numerical stability.
Further up-scaling by adding FMUs for other aircraft sub-
systems, such as a fuel system, a hydraulic system, and an
auxiliary power unit, would reveal the scalability benefits,
in terms of execution time, of the TLM solution.

The presented use case demonstrates the OMSimulator
as an industrially relevant open-source alternative or com-

plements to existing FMI-supporting master simulation
tools in aircraft vehicle systems applications. Combining
the TLM technique with the more traditional method of
simulating coupled FMUs is a most promising and flexi-
ble approach for scalable, numerically stable and accurate,
distributed simulation. The use case shows that combin-
ing models from multiple modelling and simulation do-
mains, from both industry and academia, is feasible using
the OMSimulator. In (Hällqvist et al., 2018) and (Schmin-
der et al., 2018), the focus is placed on studies relating
ECS performance to pilot thermal comfort. Other pos-
sible areas of application are various optimization stud-
ies, e.g., minimizing the engine air consumed by the ECS
while maximizing pilot comfort.

Figure 6. A subset of the simulation boundary conditions, Alti-
tude and Mach number.

5.2 Energy Demonstrator
Driven by the need to limit global warming, the energy
systems worldwide are in a phase of expanding renewable
energy as an alternative to conventional power plants.

The design and control of combined cycle power plants
are expected to become increasingly more important as
a method of balancing the electric networks with a large
share of renewable energy input. This demonstrator is mo-

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 75
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

Figure 7. ECS supply pressure to included fuel system model.
Results from the TLM Composit model simulation is depictd as
red and the Native FMI Composite model simulation as black.

tivated by the need to enable suppliers, in an early design
phase, to test the complete functionality by utilizing well-
verified models from different sources, without having to
convert all models to run by the same tool. This is needed
for the entire electrical grid.

The project goal of this joint energy demonstrator was
to combine FMUs from four different suppliers, to show
that each supplier’s verified knowledge, expressed by their
FMU, could be used for design, and transient analysis of
a power plant.

Figure 8. Energy demonstrator of a combined cycle power sta-
tion with detailed accurate models (total over 30000 equations)
from different suppliers, provided as FMUs.

The power plant in Figure 8 is a combined cycle plant
(CCPP) with steam extraction to a district heating system.
The FMUs are a gas turbine (GT) supplying flue gases to a
heat recovery steam generator (HRSG) that supplies steam
to a district heating system (DH). The GT shaft drives a
generator connected to a large utility network, the model
named SMIB. The HRSG also supplies steam to a steam
turbine that is included in the HRSG model.

Following entities supplies FMUs for the CCPP:

1. Siemens Industrial Turbomachinery AB supplies the
GT

2. KTH supplies the net model

3. EDF supplies the HRSG with ST

4. Equa AB supplies the DH

The simulation results of the generator power during
GT start-up from the model shown in Figure 8 depend on
communication interval and error tolerance. To achieve
accurate results, the simulation settings need to be tight-
ened up which increases the simulation time dramatically.
This encouraged us to develop further advanced simula-
tion technologies, such as a master-algorithm with vari-
able step size and input extrapolation based on output
derivative information.

OMSimulator has the capability for early multi-domain
simulations in the design and configuration phase but also
supporting behaviour control in the operational and re-
cycling phase and support closed loops for a sustainable
environment.

With this new technology and with the promising test
results we will be able to support the vision of sustainable
zero emission power plants with optimized solutions and
also bridge technologies from different partners.

5.3 SKF 3D Mechanical Demonstrator
Models of 3D mechanics typically contain stiff equations
and short time constants. This makes them especially sen-
sitive to delayed variables and thereby poses an interest-
ing challenge for co-simulation. To demonstrate the sta-
bility benefits of TLM, a model of a hydraulic crane with
two actuators was developed, see Figure 9. The intention
is to simulate a model of a roller bearing from SKF to-
gether with the surrounding system for achieving accurate
boundary conditions. SKF is one of the world’s largest
suppliers of bearings and has a great interest in simulat-
ing their bearing models together with models from cus-
tomers. This model constitutes a typical scenario, where a
system model developed by a customer is connected to a
bearing model developed by the supplier. An early proto-
type of the demonstrator was presented in (Braun et al.,
2017a). Table 2 shows an overview of the sub-models
in the composite model. All mechanical bodies are mod-
elled in Dymola and exported as FMUs. The crane arms
are connected through a roller bearing modelled in SKF
BEAST (Fritzson et al., 2014, 2018). The crane me-
chanics is modelled using rigid bodies, while the bear-
ing model contains flexible bodies and contact mechanics.
Motion is controlled by a hydraulic system modelled in
Hopsan, a system simulation tool specialized for hydraulic
and mechatronic systems developed by Linköping Univer-
sity (Axin et al., 2010). Experiments show that the model
works well with FMI for model exchange. With FMI for
co-simulation, either callback functions or fine-grained in-
terpolation (see section 2.2) are required to achieve stable

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

76 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Figure 9. The SKF crane demonstrator model is used to verify
stability in 3D connections.

results. When using sampled inputs with zero-order hold,
stability cannot be achieved even when using a step-size
1000 times smaller than the other methods. Results and
performance cannot be compared to a monolithic imple-
mentation because there is no tool capable of simulating
all three parts of the model: the bearing, the crane and
the hydraulic system. Nevertheless, results are fully re-
alistic. The motion agrees well with simplified models.
Static forces and torques all have correct magnitudes. No
unaccountable phenomena have been observed.

Table 2. Overview of the different sub-models in the SKF
demonstrator model.

Sub-model Tool
Boom FMU (Dymola)

Jib FMU (Dymola)
Load FMU (Dymola)

Piston FMU (Dymola)
Bearing BEAST

Hydraulics Hopsan
Controller Hopsan

6 Related Work
Table 3 compares related tools and libraries that also sup-
port similar co-simulation functionality. There are both
commercial and free-of-charge solutions available with
different licences. All tools support both model-exchange
and co-simulation FMUs. PyFMI is the only tool which
does not include built-in support for lookup tables. This
feature is quite handy, but not critical because it can be
isolated and solved by dedicated FMUs.

Except for Simulink, all tools support handling of al-
gebraic loops. In Simulink, however, it is not possible
to execute such composite models. Introducing a delayed
signal can circumvent this issue, but is not considered as
an appropriate solution since it introduces unintended dy-
namics.

All the tools except FMI Composer (Modelon), provide
some kind of scripting interface. DACCOSIM (Virginie
et al., 2015), Simulink and Dymola have proprietary solu-
tions and OMSimulator, PySimulator (Pfeiffer et al., 2012;

Asghar et al., 2015), FMI Go! (Lacoursière and Härdin,
2017), and PyFMI (Christian et al., 2016) are based on
open scripting languages.

OMSimulator uses the upcoming SSP standard as an
exchange format for composite models, as well as FMI
Go!, and FMI Composer.

7 Conclusions
OMSimulator 2.0 is part of the OpenModelica 1.13.0 re-
lease and also available as a standalone application. It pro-
vides the following functionality. It supports both FMI
variants, i.e. model-exchange and co-simulation. It sup-
ports also the TLM technique to decouple co-simulation
units and potentially stabilize the simulation. TLM con-
nections enable direct tool-coupling as well, e.g. with
Adams, Beast, and Simulink.

The OpenModelica graphical editor OMEdit is con-
nected to OMSimulator via a C-API and provides a rich
user experience.

The SSP standard, which is still under development,
is supported as an early prototype to enable exchanging
models with an open and independent standard. As an ex-
tension to the current SSP version, signal grouping and
bus connections are supported and integrated into the SSP
using annotations.

Compared to other tools, OMSimulator has outstand-
ing features like TLM and SSP support. The open-source
implementation facilitates use by academics and also in
industry. It can be used as a research platform for co-
simulation.

Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENCPS, and EMPHYSIS projects and in the Vinnova
RTISIM project. Support from the Swedish Government
has been received from the ELLIIT project. The Open-
Modelica development is supported by the Open Source
Modelica Consortium. Many students, researchers, and
engineers have contributed to the OpenModelica system.
There is not room here to mention all these people, but we
gratefully acknowledge their contributions.

References
Adeel Asghar, Andreas Pfeiffer, Arunkumar Palanisamy,

Alachew Mengist, Martin Sjölund, Adrian Pop, and Pe-
ter Fritzson. Automatic regression testing of simula-
tion models and concept for simulation of connected
FMUs in PySimulator. In Fritzson and Elmqvist (2015).
doi:10.3384/ecp15118671.

Syed Adeel Asghar and Sonia Tariq. Design and implemen-
tation of a user friendly OpenModelica graphical connec-
tion editor. Master’s thesis, Linköping University, De-
partment of Computer and Information Science, Decem-
ber 2010. URL http://urn.kb.se/resolve?urn=
urn:nbn:se:liu:diva-65864.

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 77
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

Table 3. Comparison of related tools.

OMSimulator DACCOSIM Simulink PyFMI
Commercial No No Yes No
Open-source OSMC-PL, GPL AGPL2 No LGPL
Lookup Table Yes Yes Yes No
Alg. Loops Yes Yes No Yes
Scripting Python, Lua proprietary proprietary Python
GUI Yes Yes Yes No
SSP Yes No No No
platform Linux/Win/macOS Linux/Win Linux/Win/macOS Linux/Win/macOS

Dymola PySimulator FMI Go! FMI Composer
Commercial Yes No No Yes
Open-source No BSD MIT No
Lookup Table Yes Yes Yes Yes
Alg. Loops Yes Yes Yes Yes
Scripting proprietary Python Go No
GUI Yes Yes No Yes
SSP No No Yes Yes
platform Linux/Win Linux/Win Linux/Win/macOS Linux/Win/macOS

Mikael Axin, Robert Braun, Alessandro Dell’Amico, Björn
Eriksson, Peter Nordin, Karl Pettersson, Ingo Staack, and
Petter Krus. Next generation simulation software using trans-
mission line elements. In Fluid Power and Motion Control,
Bath, England, September 2010.

Martin Benedikt, Daniel Watzenig, and Anton Hofer. Mod-
elling and analysis of the non-iterative coupling pro-
cess for co-simulation. Mathematical and Computer
Modelling of Dynamical Systems, 19(5):451–470, 2013.
doi:10.1080/13873954.2013.784340.

Robert Braun, Adeel Asghar, Adrian Pop, and Dag Fritzson.
An open-source framework for efficient co-simulation of fluid
power systems. In Proceedings of 15th Scandinavian Inter-
national Conference on Fluid Power, June 7-9, 2017, num-
ber 144, pages 393–400, Linköping, Sweden, June 2017a.
Linköping University Electronic Press, Linköpings univer-
sitet.

Robert Braun, Robert Hällqvist, and Dag Fritzon. TLM-based
Asynchronous Co-simulation with the Functional Mockup
Interface. In IUTAM Symposium on Solver Coupling and Co-
Simulation, Darmstadt, Germany, September 2017b.

David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward A. Lee, Michael Masin, Stavros Tripakis, and
Michael Wetter. Determinate composition of fmus for
co-simulation. Technical Report UCB/EECS-2013-153,
EECS Department, University of California, Berkeley,
Aug 2013. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2013/EECS-2013-153.html.

Andersson Christian, Åkesson Johan, and Führer Claus.
PyFMI: A Python Package for Simulation of Cou-
pled Dynamic Models with the Functional Mock-up
Interface. Technical Report 2, Centre for Mathemat-
ical Sciences, Lund University, 2016. URL https:
//lup.lub.lu.se/search/publication/
961a50eb-e4a8-43bc-80ac-d467eef26193.

Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher
Brooks, and Edward A. Lee. Fide: An fmi integrated develop-
ment environment. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, SAC ’16, pages 1759–
1766, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
3739-7. doi:10.1145/2851613.2851677.

Fabio Cremona, Marten Lohstroh, David Broman, Edward A.
Lee, Michael Masin, and Stavros Tripakis. Hybrid co-
simulation: it’s about time. Software & Systems Modeling,
November 2017. ISSN 1619-1374. doi:10.1007/s10270-017-
0633-6.

Dassault Systemes AB. Dymola. URL https:
//www.3ds.com/products-services/catia/
products/dymola/.

Edo Drenth. Method and system for control and co-simulation of
physical systems, March 2 2017. US Patent App. 15/232,261.

FMI development group. Functional Mock-up Interface for
Model Exchange and Co-Simulation v2.0. Modelica Associ-
ation Project “FMI”, October 2014. URL https://www.
fmi-standard.org/. Standard Specification.

Dag Fritzson, Lars-Erik Stacke, and Jens Anders. Dy-
namic simulation–building knowledge in product develop-
ment. Evolution, 1, 2014.

Dag Fritzson, Robert Braun, and Jan Hartford. Composite mod-
elling in 3-d mechanics utilizing transmission line modelling
(tlm) and functional mock-up interface (fmi). 2018.

Peter Fritzson and Hilding Elmqvist, editors. Proceedings of the
11th International Modelica Conference, September 2015.
Modelica Association and Linköping University Electronic
Press. doi:10.3384/ecp15118.

Robert Hällqvist, Rober Braun, and Petter Krus. Early Insights
on FMI-based Co-Simulation of Aircraft Vehicle Systems. In

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

78 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Proceedings of the 15th Scandinavian International Confer-
ence on Fluid Power, Linköping, Sweden, 2017.

Robert Hällqvist, Jörg Schminder, Magnus Eek, Robert Braun,
Roland Gårdhagen, and Peter Krus. A novel FMI and TLM-
based simulator for detailed studies of thermal pilot com-
fort. In Proceedings of the 31st Congress of the International
Council of the Aeronautical Sciences (ICAS), Belo Horizonte,
Brazil, 2018.

Abir Ben Khaled, Laurent Duval, Mohamed El Mongi Ben Gaïd,
and Daniel Simon. Context-based polynomial extrapolation
and slackened synchronization for fast multi-core simulation
using fmi. In International Modelica Conference, pages 225–
234. Linköping University Electronic Press, 2014.

Petter Krus. Robust modelling using bi-lateral delay lines for
high speed simulation of complex systems. In DINAME
2011: 14th International Symposium on Dynamic Prob-
lems in Mechanics, 2011. URL http://urn.kb.se/
resolve?urn=urn:nbn:se:liu:diva-67897. In-
vited conference contribution.

Claude Lacoursière and Tomas Härdin. Fmi Go! A Simula-
tion runtime environment with a client server architecture
over multiple protocols. In 12th Int. Modelica Confer-
ence, Prague, Czech Republic, 2017. URL https:
//www.modelica.org/events/modelica2017/
proceedings/html/submissions/
ecp17132653_LacoursiereHardin.pdf.

Lawrence Livermore National Laboratory. SUNDIALS:
SUite of Nonlinear and Differential/ALgebraic Equation
Solvers. URL https://computation.llnl.gov/
projects/sundials/cvode.

MathWorks. Simulink. URL https://www.mathworks.
com/products/simulink.html.

Alachew Mengist, Adeel Asghar, Adrian Pop, Peter Fritzson,
Willi Braun, Alexander Siemers, and Dag Fritzson. An open-
source graphical composite modeling editor and simulation
tool based on fmi and tlm co-simulation. In Fritzson and
Elmqvist (2015). doi:10.3384/ecp15118181.

MODELISAR Consortium. MODELISAR - From System Mod-
eling to S/W running on the Vehicle, 2011. URL https:
//itea3.org/project/modelisar.html.

Modelon. FMI COMPOSER. URL https:
//www.modelon.com/products-services/
modelon-deployment-suite/fmi-composer/.

Sarah Nunneley and Richard Stibley. Fighter Index of Thermal
Stress: Development of Interim Guidance for Hot-Weather
USAF Operations. Journal of the American Society of Heat-
ing and Ventilating Engineers, 50:639–642, 1979.

OpenCPS project partners. FMI Master Simulation Tool Re-
quirement Specification, December 2016. URL https:
//itea3.org/project/opencps.html.

Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Martin
Otter, and Matthias Reiner. PySimulator – A Simula-
tion and Analysis Environment in Python with Plugin In-
frastructure. In 9th Int. Modelica Conference, Munich,

Germany, 2012. URL http://www.ep.liu.se/ecp/
076/053/ecp12076053.pdf.

Tom Schierz and Martin Arnold. Stabilized overlapping modular
time integration of coupled differential-algebraic equations.
Applied Numerical Mathematics, 62(10):1491 – 1502, 2012.
ISSN 0168-9274. doi:10.1016/j.apnum.2012.06.020.

Tom Schierz, Martin Arnold, and Christoph Clauß. Co-
simulation with communication step size control in an FMI
compatible master algorithmnak. In 9th Int. Modelica Con-
ference, Munich, Germany, pages 205–214, 2012.

Jörg Schminder, Roland Gårdhagen, Elias Nilsson, Karl Storck,
and Matts Karlsson. Development of a Cockpit-Pilot Model
for Thermal Comfort Optimization During Long-Mission
Flight. In Proceedings of the AIAA Modeling and Simulation
Technologies Conference, 2016.

Jörg Schminder, Robert Hällqvist, Magnus Eek, and Roland
Gårdhagen. Pilot performance and heat stress assessment
support using a cockpit thermoregulatory simulation model.
In Proceedings of the 31st Congress of the International
Council of the Aeronautical Sciences (ICAS), Belo Horizonte,
Brazil, 2018.

Bernhard Schweizer, Daixing Lu, and Pu Li. Co-simulation
method for solver coupling with algebraic constraints incor-
porating relaxation techniques. Multibody System Dynamics,
36(1):1–36, 2016. ISSN 1573-272X. doi:10.1007/s11044-
015-9464-9.

Alexander Siemers, Dag Fritzson, and Peter Fritzson. Meta-
Modeling for Multi-Physics Co-Simulation applied for Open-
Modelica. In International Congress on Methodologies
for Emerging Technologies in Automation (ANIPLA2006),
Rome, Italy, November 13–15 2006.

Alexander Siemers, Dag Fritzson, and Iakov Nakhimovski. Gen-
eral meta-model based co-simulations applied to mechanical
systems. Simulation Modelling Practice And Theory, 17(4):
612–624, 2009. doi:doi:10.1016/j.simpat.2008.10.006.

Martin Sjölund. Tools and Methods for Analysis, Debugging,
and Performance Improvement of Equation-Based Models.
Doctoral thesis No 1664, Linköping University, Department
of Computer and Information Science, 2015.

Martin Sjölund, Robert Braun, Peter Fritzson, and Petter Krus.
Towards efficient distributed simulation in modelica using
transmission line modeling. In 3rd International Workshop
on Equation-Based Object-Oriented Languages and Tools.,
Oslo, Norway, October 2010. URL http://www.ep.
liu.se/ecp/047/.

J. P. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G. Plessis,
M. Schumann, A. Cuccuru, and S. Revol. Toward an ac-
curate and fast hybrid multi-simulation with the fmi-cs stan-
dard. In 2016 IEEE 21st International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), pages 1–5,
September 2016. doi:10.1109/ETFA.2016.7733616.

Galtier Virginie, Vialle Stephane, Dad Cherifa, Jean-Philippe
Tavella, Lam-Yee-Mui Jean-Philippe, and Plessis Gilles.
Fmi-based distributed multi-simulation with daccosim. pages
39–46, 2015. URL http://dl.acm.org/citation.
cfm?id=2872965.2872971.

	Session 1C: FMI 1
	OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

